3.8.63 \(\int \frac {(c+d x)^{3/2}}{x (a+b x)^{3/2}} \, dx\) [763]

Optimal. Leaf size=119 \[ \frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}-\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2}} \]

[Out]

-2*c^(3/2)*arctanh(c^(1/2)*(b*x+a)^(1/2)/a^(1/2)/(d*x+c)^(1/2))/a^(3/2)+2*d^(3/2)*arctanh(d^(1/2)*(b*x+a)^(1/2
)/b^(1/2)/(d*x+c)^(1/2))/b^(3/2)+2*(-a*d+b*c)*(d*x+c)^(1/2)/a/b/(b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {100, 163, 65, 223, 212, 95, 214} \begin {gather*} -\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2}}+\frac {2 \sqrt {c+d x} (b c-a d)}{a b \sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(3/2)/(x*(a + b*x)^(3/2)),x]

[Out]

(2*(b*c - a*d)*Sqrt[c + d*x])/(a*b*Sqrt[a + b*x]) - (2*c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c
 + d*x])])/a^(3/2) + (2*d^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/b^(3/2)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(c+d x)^{3/2}}{x (a+b x)^{3/2}} \, dx &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}+\frac {2 \int \frac {\frac {b c^2}{2}+\frac {1}{2} a d^2 x}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{a b}\\ &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}+\frac {c^2 \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{a}+\frac {d^2 \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{b}\\ &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}+\frac {\left (2 c^2\right ) \text {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{a}+\frac {\left (2 d^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{b^2}\\ &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}-\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {\left (2 d^2\right ) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{b^2}\\ &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}-\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.66, size = 187, normalized size = 1.57 \begin {gather*} -\frac {2 \left (b^{3/2} c^{3/2} (a+b x) \tanh ^{-1}\left (\frac {\sqrt {d} \left (-b x+\sqrt {\frac {b}{d}} \sqrt {a+b x} \sqrt {c+d x}\right )}{\sqrt {a} \sqrt {b} \sqrt {c}}\right )+\sqrt {a} \sqrt {d} \left (\sqrt {\frac {b}{d}} (-b c+a d) \sqrt {a+b x} \sqrt {c+d x}+a d (a+b x) \log \left (\sqrt {a+b x}-\sqrt {\frac {b}{d}} \sqrt {c+d x}\right )\right )\right )}{a^{3/2} \left (\frac {b}{d}\right )^{3/2} d^{3/2} (a+b x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(3/2)/(x*(a + b*x)^(3/2)),x]

[Out]

(-2*(b^(3/2)*c^(3/2)*(a + b*x)*ArcTanh[(Sqrt[d]*(-(b*x) + Sqrt[b/d]*Sqrt[a + b*x]*Sqrt[c + d*x]))/(Sqrt[a]*Sqr
t[b]*Sqrt[c])] + Sqrt[a]*Sqrt[d]*(Sqrt[b/d]*(-(b*c) + a*d)*Sqrt[a + b*x]*Sqrt[c + d*x] + a*d*(a + b*x)*Log[Sqr
t[a + b*x] - Sqrt[b/d]*Sqrt[c + d*x]])))/(a^(3/2)*(b/d)^(3/2)*d^(3/2)*(a + b*x))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(305\) vs. \(2(91)=182\).
time = 0.08, size = 306, normalized size = 2.57

method result size
default \(\frac {\left (-\ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}+2 a c}{x}\right ) b^{2} c^{2} x \sqrt {b d}+\ln \left (\frac {2 b d x +2 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) a b \,d^{2} x \sqrt {a c}-\sqrt {b d}\, \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}+2 a c}{x}\right ) a b \,c^{2}+\ln \left (\frac {2 b d x +2 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) \sqrt {a c}\, a^{2} d^{2}-2 \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, a d +2 \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, b c \right ) \sqrt {d x +c}}{\sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}\, \sqrt {a c}\, \sqrt {b x +a}\, a b}\) \(306\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(3/2)/x/(b*x+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(-ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((d*x+c)*(b*x+a))^(1/2)+2*a*c)/x)*b^2*c^2*x*(b*d)^(1/2)+ln(1/2*(2*b*d*x+2*((d*
x+c)*(b*x+a))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a*b*d^2*x*(a*c)^(1/2)-(b*d)^(1/2)*ln((a*d*x+b*c*x+2*(a*c
)^(1/2)*((d*x+c)*(b*x+a))^(1/2)+2*a*c)/x)*a*b*c^2+ln(1/2*(2*b*d*x+2*((d*x+c)*(b*x+a))^(1/2)*(b*d)^(1/2)+a*d+b*
c)/(b*d)^(1/2))*(a*c)^(1/2)*a^2*d^2-2*(b*d)^(1/2)*(a*c)^(1/2)*((d*x+c)*(b*x+a))^(1/2)*a*d+2*(b*d)^(1/2)*(a*c)^
(1/2)*((d*x+c)*(b*x+a))^(1/2)*b*c)*(d*x+c)^(1/2)/((d*x+c)*(b*x+a))^(1/2)/(b*d)^(1/2)/(a*c)^(1/2)/(b*x+a)^(1/2)
/a/b

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/x/(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 211 vs. \(2 (91) = 182\).
time = 2.13, size = 956, normalized size = 8.03 \begin {gather*} \left [\frac {{\left (a b d x + a^{2} d\right )} \sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {d}{b}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + {\left (b^{2} c x + a b c\right )} \sqrt {\frac {c}{a}} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a^{2} c + {\left (a b c + a^{2} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {c}{a}} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) + 4 \, {\left (b c - a d\right )} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b^{2} x + a^{2} b\right )}}, -\frac {2 \, {\left (a b d x + a^{2} d\right )} \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d^{2} x^{2} + a c d + {\left (b c d + a d^{2}\right )} x\right )}}\right ) - {\left (b^{2} c x + a b c\right )} \sqrt {\frac {c}{a}} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a^{2} c + {\left (a b c + a^{2} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {c}{a}} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) - 4 \, {\left (b c - a d\right )} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b^{2} x + a^{2} b\right )}}, \frac {2 \, {\left (b^{2} c x + a b c\right )} \sqrt {-\frac {c}{a}} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {c}{a}}}{2 \, {\left (b c d x^{2} + a c^{2} + {\left (b c^{2} + a c d\right )} x\right )}}\right ) + {\left (a b d x + a^{2} d\right )} \sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {d}{b}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \, {\left (b c - a d\right )} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b^{2} x + a^{2} b\right )}}, \frac {{\left (b^{2} c x + a b c\right )} \sqrt {-\frac {c}{a}} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {c}{a}}}{2 \, {\left (b c d x^{2} + a c^{2} + {\left (b c^{2} + a c d\right )} x\right )}}\right ) - {\left (a b d x + a^{2} d\right )} \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d^{2} x^{2} + a c d + {\left (b c d + a d^{2}\right )} x\right )}}\right ) + 2 \, {\left (b c - a d\right )} \sqrt {b x + a} \sqrt {d x + c}}{a b^{2} x + a^{2} b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/x/(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a*b*d*x + a^2*d)*sqrt(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a
*b*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x) + (b^2*c*x + a*b*c)*sqrt(c/a)*log((8*a^
2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a^2*c + (a*b*c + a^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt
(c/a) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*(b*c - a*d)*sqrt(b*x + a)*sqrt(d*x + c))/(a*b^2*x + a^2*b), -1/2*(2*
(a*b*d*x + a^2*d)*sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^
2 + a*c*d + (b*c*d + a*d^2)*x)) - (b^2*c*x + a*b*c)*sqrt(c/a)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)
*x^2 - 4*(2*a^2*c + (a*b*c + a^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(c/a) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) -
 4*(b*c - a*d)*sqrt(b*x + a)*sqrt(d*x + c))/(a*b^2*x + a^2*b), 1/2*(2*(b^2*c*x + a*b*c)*sqrt(-c/a)*arctan(1/2*
(2*a*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-c/a)/(b*c*d*x^2 + a*c^2 + (b*c^2 + a*c*d)*x)) + (a*b
*d*x + a^2*d)*sqrt(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a*b*d)*sqrt
(b*x + a)*sqrt(d*x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x) + 4*(b*c - a*d)*sqrt(b*x + a)*sqrt(d*x + c))/(a*b
^2*x + a^2*b), ((b^2*c*x + a*b*c)*sqrt(-c/a)*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sq
rt(-c/a)/(b*c*d*x^2 + a*c^2 + (b*c^2 + a*c*d)*x)) - (a*b*d*x + a^2*d)*sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a
*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^2 + a*c*d + (b*c*d + a*d^2)*x)) + 2*(b*c - a*d)*sqrt(b*x +
 a)*sqrt(d*x + c))/(a*b^2*x + a^2*b)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (c + d x\right )^{\frac {3}{2}}}{x \left (a + b x\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(3/2)/x/(b*x+a)**(3/2),x)

[Out]

Integral((c + d*x)**(3/2)/(x*(a + b*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/x/(b*x+a)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c+d\,x\right )}^{3/2}}{x\,{\left (a+b\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(3/2)/(x*(a + b*x)^(3/2)),x)

[Out]

int((c + d*x)^(3/2)/(x*(a + b*x)^(3/2)), x)

________________________________________________________________________________________